Навіщо потрібні прискорювачі елементарних частинок
Прискорювач часток – це пристрій, який прискорює субатомні частинки до високих швидкостей, використовуючи електромагнітні поля. Він генерує пучок заряджених частинок, який використовується в численних дослідницьких цілях.
Історія прискорювача елементарних частинок сходить до 1930 року, коли вчені розробили трансформатор на 200 000 вольт і прискорювали протони по прямій траєкторії. Хоча машина не виконала своє призначення, вона почала пошуки прискорювачів частинок більш високої енергії, які тривають і донині.
У 20-му столітті прискорювачі часток були названі атомними руйнівниками. Назва зберігається, незважаючи на те, що сучасні прискорювачі створюють зіткнення між двома субатомними частинками, а не атомними ядрами.
Зіткнення таких частинок можуть допомогти вченим зрозуміти, як працює Всесвіт. Прискорювачі часток високих енергій надзвичайно корисні для фундаментальних і прикладних досліджень в різних областях, від електроніки і медицини до міжнародної безпеки.
Як працюють прискорювачі?
На базовому рівні прискорювачі часток генерують пучок заряджених частинок, який використовується для численних дослідницьких цілей. Зазвичай пучок складається з заряджених субатомних частинок (таких як протони й електрони), але в деяких випадках використовуються цілі атоми більш важких елементів (таких як уран і золото).
Наприклад, в кільцевих прискорювачах частинки безперервно прискорюються в круглій трубі. Напруженість електричного поля збільшується з кожним проходом, підвищуючи рівень енергії пучка частинок.
Коли частинки досягають необхідної швидкості, ціль (наприклад, тонкий шматок металевого листа) поміщається на їх шляху, де детектор частинок аналізує зіткнення.
В цілому, існує 6 ключових компонентів в прискорювачах елементарних частинок:
А) Частка S: забезпечує прискорення частинок (таких як електрони або протони). Один балон з газоподібним воднем, наприклад, може бути джерелом частинок. Один атом гідрогену містить один електрон і один протон.
Б) Металева труба: містить вакуум, в якому рухається пучок частинок. Вакуум підтримує чисте середовище для безперешкодного переміщення заряджених елементарних частинок.
C) Електромагніти: контролюють рух частинок, коли вони проходять через металеву трубу.
D) Електричні поля: регулярно переключаються з позитивного на негативний. Це генерує радіохвилі, які прискорюють заряджені частинки.
E) Цілі: коли частинки досягають бажаної швидкості, вони стикаються з нерухомою ціллю. Іноді стикаються два пучки часток.
F) Детектори: реєструють зіткнення частинок і виявляють радіацію або субатомні частки, які генеруються в процесі.
Найбільші прискорювачі часток в світі
В даний час в світі діють більше 30000 прискорювачів частинок. З них 44% використовуються для променевої терапії, 41% для іонної імплантації, 9% для промислової обробки і 4% для низькоенергетичних і біомедичних досліджень. Тільки 1% існуючих прискорювачів здатні генерувати енергії понад один мільярд електрон-вольт або 1 ГеВ.
В даний час Великий адронний колайдер (ВАК) є найпотужнішим прискорювачем частинок в світі. Він здатний прискорювати два пучки протонів до енергії 6, 5 тераелектрон-вольт. Коли ці два потужних пучка стикаються, вони створюють енергію центру мас 13 тераелектрон-вольт (ТеВ).
ВАК лежить в тунелі глибиною 175 метрів. Він має 27 кілометрів в окружності, і його кільце магнітів може створювати магнітне поле 8, 36 Тесла.
Колайдер містить понад 1000 дипольних магнітів, які утримують частинки, які рухаються майже зі швидкістю світла: одна частинка рухається по 27-кілометровому кільцю 11 000 разів в секунду. Розроблений Великий адронний колайдер Європейською організацією ядерних досліджень у співпраці з більш ніж 10000 дослідників і сотнями лабораторій та університетів з більш ніж 100 країн.
Частка бозона Хіггса, яку іноді називають «часткою Бога», була виявлена в Великому адронному колайдері в 2012 році. У тому ж році фізики сформували кварк-глюонну плазму, яка могла досягати 5, 5 трильйона градусів за Цельсієм – найвищої температури, зареєстрованої рукотворної машиною.
У найближчі роки ця гігантська машина дозволить фізикам перевірити різні теорії фізики елементарних частинок, включаючи аналіз властивостей бозонів Хіггса, пошук нових елементарних частинок, пропонованих суперсиметричними теоріями, а також розв’язання інших загадок у всесвіті.
Також вже заплановано побудову нового прискорювача – Майбутнього кільцевого колайдера (ВКК), який буде ще потужнішим від ВАК. Запуск ВКК заплановано на 2040 р.
Застосування
Від промисловості до енергопостачання, від охорони здоров`я до безпеки – крім наукових досліджень, існує кілька областей, в яких технологія, пов`язана з прискоренням частинок, позитивно впливає на життя людей.
Застосування в медицині. Щорічно мільйони пацієнтів отримують діагностику і лікування на основі прискорювачів в клініках і лікарнях по всьому світу. Прискорені частки (такі як протони, електрони або більш важкі заряджені частинки) використовуються для знищення ракових клітин і створення детального зображення зсередини тіла.
Споживчі товари. Прискорювачі часток в даний час використовуються в різних промислових процесах, починаючи від зшивання пластмаси для термічної плівки і закінчуючи виробництвом комп`ютерних чіпів. Зокрема, прискорювачі іонних пучків використовуються для виготовлення електронних мікросхем і зміцнення поверхонь матеріалів, подібних до тих, які використовуються в штучних з’єднаннях.
Національна безпека. Прискорювачі грають важливу роль в управлінні запасами, перевірці вантажів і характеристиці матеріалів. Вони в основному використовуються для сканування контейнерів і предметів та допомагають ідентифікувати зброю та інші небезпечні матеріали.
Що ще вони можуть зробити?
Аналіз зіткнень частинок високих енергій може бути корисним для фундаментальних і прикладних досліджень в науці. Це може допомогти фізикам вирішити деякі фундаментальні проблеми в фізиці, включаючи глибоку структуру простору-часу і взаємозв`язок між загальною теорією відносності та квантовою механікою.
Ось чотири основні питання, на які вчені сподіваються відповісти протягом наступних кількох десятиліть:
- Чи існують додаткові виміри, передбачені моделями теорії струн?
- Яка природа темної матерії?
- Як виглядав ранній Всесвіт?
- Чому ми бачимо асиметрію між речовиною і антиречовиною у Всесвіті?
За словами Стівена Хокінга, технологія, заснована на прискорювачі частинок, є найближчою річчю до машини часу. У 2010 році він написав статтю, яка пояснює, як можна подорожувати в часі.